Eventually, you will categorically discover a other experience and exploit by spending more cash. still when? realize you undertake that you require to acquire those every needs in the manner of having significantly cash? Why dont you try to acquire something basic in the beginning? Thats something that will guide you to understand even more approximately the globe, experience, some places, in the manner of history, amusement, and a lot more?

It is your totally own period to conduct yourself reviewing habit. in the midst of guides you could enjoy now is uranium in the environment mining impact and consequences below.

Uranium in the Environment - Broder J. Merkel - 2006
The topics covered are:
impact on groundwater from radionuclide emission, analytical specification techniques, chemical toxicity, radioisotope plant uptake, microbiology, geochemical and reactive transport, case studies on active and abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies.

Uranium in the Environment - Broder J. Merkel - 2006
The topics covered are:
impact on groundwater from radionuclide emission, analytical specification

Downloaded from hortonhillfarm.com on December 14, 2021 by guest
safeguards the environment, radioisotope plant uptake, microbiology, geochemical and reactive transport, case studies on active and abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies.

Uranium Mining in Virginia - National Research Council - 2012-09-03

Uranium mining in the Commonwealth of Virginia has been prohibited since 1982 by a state moratorium, although approval for restricted uranium exploration in the state was granted in 2007. Uranium Mining in Virginia examines the scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining, milling, and processing as they relate to the Commonwealth of Virginia for the purpose of assisting the Commonwealth to determine whether uranium mining, milling, and processing can be undertaken in a manner that safeguards the environment, radioisotope plant uptake, microbiology, geochemical and reactive transport, case studies on active and abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies.

natural and historic resources, agricultural lands, and the health and well-being of its citizens. According to this report, if Virginia lifts its moratorium, there are "steep hurdles to be surmounted" before mining and processing could take place within a regulatory setting that appropriately protects workers, the public, and the environment, especially given that the state has no experience regulating mining and processing of the radioactive element. The authoring committee was not asked to recommend whether uranium mining should be permitted, or to consider the potential benefits to the state were uranium mining to be pursued. It also was not asked to compare the relative risks of uranium mining to the mining of other fuels such as coal. This book will be of interest to decision makers at the state and local level, the energy industry, and concerned citizens.

Uranium Mining in Virginia - National Research
that the state has no
Uranium mining in the Commonwealth of Virginia has been prohibited since 1982 by a state moratorium, although approval for restricted uranium exploration in the state was granted in 2007. Uranium Mining in Virginia examines the scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining, milling, and processing as they relate to the Commonwealth of Virginia for the purpose of assisting the Commonwealth to determine whether uranium mining, milling, and processing can be undertaken in a manner that safeguards the environment, natural and historic resources, agricultural lands, and the health and well-being of its citizens. According to this report, if Virginia lifts its moratorium, there are "steep hurdles to be surmounted" before mining and processing could take place within a regulatory setting that appropriately protects workers, the public, and the environment, especially given experience regulating mining and processing of the radioactive element. The authoring committee was not asked to recommend whether uranium mining should be permitted, or to consider the potential benefits to the state were uranium mining to be pursued. It also was not asked to compare the relative risks of uranium mining to the mining of other fuels such as coal. This book will be of interest to decision makers at the state and local level, the energy industry, and concerned citizens.

Uranium in the Aquatic Environment - Broder Merkel - 2012-12-06

Preface Uranium is a radioactive element and a heavy metal which is naturally occurring in ground and surface water. Although uranium is enriched in granites and gneiss ground water from these host rocks often shows low to intermediate uranium concentrations, while some ground waters from sandstone and carbonate
scientific interest in the topic uranium concentrations up to several hundred mg/l without man made impact. On the other side, surface water contains increased anthropogenic uranium concentrations due to the intensive use of phosphate fertilizers and in mining areas due to mining and milling activities. Saxony and Thuringia both being states of the reunified Germany are probably an area where uranium mining activities have impacted the environment more severely than in any other part of the world. Thus, the federal government of Germany allocated huge amounts of money for the rehabilitation work, a unique proceeding without precedent in mining history. In October 1995 the first international conference on Uranium Mining and Hydrogeology (UMM I) was held in Freiberg being organized by the Department of Geology at the technical University Freiberg by the support of the Saxon State Ministry of Geology and Environment. Due to the large

of uranium a second conference (UMH II) took place in Freiberg in September 1998.

Uranium in the Aquatic Environment - Broder Merkel - 2012-12-06
Preface Uranium is a radioactive element and a heavy metal which is naturally occurring in ground and surface water. Although uranium is enriched in granites and gneiss ground water from these host rocks often shows low to intermediate uranium concentrations, while some ground waters from sandstone and carbonate aquifers show elevated uranium concentrations up to several hundred mg/l without man made impact. On the other side, surface water contains increased anthropogenic uranium concentrations due to the intensive use of phosphate fertilizers and in mining areas due to mining and milling activities. Saxony and Thuringia both being states of the reunified Germany are
than several hundreds ug/l uranium mining activities have impacted the environment more severely than in any other part of the world. Thus, the federal government of Germany allocated huge amounts of money for the rehabilitation work, a unique proceeding without precedent in mining history. In October 1995 the first international conference on Uranium Mining and Hydrogeology (UMM I) was held in Freiberg being organized by the Department of Geology at the technical University Freiberg by the support of the Saxon State Ministry of Geology and Environment. Due to the large scientific interest in the topic of uranium a second conference (UMH II) took place in Freiberg in September 1998.

Uranium in the Environment - Broder J Merkel - 2016-05-01
Uranium is an element to be found ubiquitous in rock, soil, and water. Uranium concentrations in natural ground water can be more without impact from mining, nuclear industry, and fertilizers. Considering the WHO recommendation for drinking water of 15 ug/l (has been as low as 2 ug/l before) due to the chemical toxicity of uranium the element uranium has become an important issue in environmental research. Besides natural enrichment of uranium in aquifers uranium mining and milling activities, further uranium processing to nuclear fuel, emissions form burning coal and oil, and the application of uranium containing phosphate fertilizers may enrich the natural uranium concentrations in soil and water by far. In October 1995 the first international conference on Uranium Mining and Hydrogeology (UMH I) was held in Freiberg being organized by the Department of Geology at the Technical University Bergakademie Freiberg by the support of the Saxon State Ministry of Geology and Environment. Due to the large scientific interest in the topic
been as low as 2 ug/l before) conference (UMH II) took place in Freiberg in September 1998. Furthermore, in September 2002 scientists working on the topic of uranium mining and hydrogeology attended the third conference (UMH III) which was jointly held together with the International Mine Water -sociation (IMWA) Symposium 2002. The reviewed papers and posters of the 2002 conference have been published by Springer entitled Uranium in the aquatic environment (edited by Merkel, Planer-Friedrich and Wolkersdorfer)."

Uranium in the Environment - Broder J Merkel - 2016-05-01

Uranium is an element to be found ubiquitous in rock, soil, and water. Uranium concentrations in natural ground water can be more than several hundreds ug/l without impact from mining, nuclear industry, and fertilizers. Considering the WHO recommendation for drinking water of 15 ug/l (has due to the chemical toxicity of uranium the element uranium has become an important issue in environmental research. Besides natural enrichment of uranium in aquifers uranium mining and milling activities, further uranium processing to nuclear fuel, emissions form burning coal and oil, and the application of uranium containing phosphate fertilizers may enrich the natural uranium concentrations in soil and water by far. In October 1995 the first international conference on Uranium Mining and Hydrogeology (UMH I) was held in Freiberg being organized by the Department of Geology at the Technical University Bergakademie Freiberg by the support of the Saxon State Ministry of Geology and Environment. Due to the large scientific interest in the topic of uranium a second conference (UMH II) took place in Freiberg in September 1998. Furthermore, in September 2002 scientists working on
The topic of uranium mining and hydrogeology attended the third conference (UMH III) which was jointly held together with the International Mine Water - society (IMWA) Symposium 2002. The reviewed papers and posters of the 2002 conference have been published by Springer entitled Uranium in the aquatic environment (edited by Merkel, Planer-Friedrich and Wolkersdorfer). "

Uranium, Mining and Hydrogeology - Broder J. Merkel - 2008-09-30
Subject of the book is Uranium and its migration in aquatic environments. The following subjects are emphasised: Uranium mining, Phosphate mining, mine closure and remediation, Uranium in groundwater and in bedrock, biogeochemistry of Uranium, environmental behavior, and modeling. Particular results from the leading edge of international research are presented.

Wastelanding - Traci Brynne Voyles - 2015-05-15
Wastelanding tells the history of the uranium industry on Navajo land in the U.S. Southwest, asking why certain landscapes and the peoples who inhabit them come to be targeted for disproportionate exposure to environmental harm. Uranium mines and mills on the Navajo Nation land have long supplied U.S. nuclear weapons and energy programs. By 1942, mines on the reservation were the main source of uranium for the top-secret Manhattan Project. Today, the Navajo Nation is
been defined on and through abandoned uranium sites. Radiation-related diseases are endemic, claiming the health and lives of former miners and nonminers alike. Traci Brynne Voyles argues that the presence of uranium mining on Diné (Navajo) land constitutes a clear case of environmental racism. Looking at discursive constructions of landscapes, she explores how environmental racism develops over time. For Voyles, the “wasteland,” where toxic materials are excavated, exploited, and dumped, is both a racial and a spatial signifier that renders an environment and the bodies that inhabit it pollutable. Because environmental inequality is inherent in the way industrialism operates, the wasteland is the “other” through which modern industrialism is established. In examining the history of wastelanding in Navajo country, Voyles provides “an environmental justice history” of uranium mining, revealing how just as “civilization” has “savagery,” environmental privilege is produced by portraying other landscapes as marginal, worthless, and pollutable.

Wastelanding - Traci Brynne Voyles - 2015-05-15
Wastelanding tells the history of the uranium industry on Navajo land in the U.S. Southwest, asking why certain landscapes and the peoples who inhabit them come to be targeted for disproportionate exposure to environmental harm. Uranium mines and mills on the Navajo Nation land have long supplied U.S. nuclear weapons and energy programs. By 1942, mines on the reservation were the main source of uranium for the top-secret Manhattan Project. Today, the Navajo Nation is home to more than a thousand abandoned uranium sites. Radiation-related diseases are endemic, claiming the health and lives of former miners and nonminers alike. Traci Brynne Voyles argues that the presence of uranium mining on Diné (Navajo) land
environmental racism. Looking at discursive constructions of landscapes, she explores how environmental racism develops over time. For Voyles, the “wasteland,” where toxic materials are excavated, exploited, and dumped, is both a racial and a spatial signifier that renders an environment and the bodies that inhabit it pollutable. Because environmental inequality is inherent in the way industrialism operates, the wasteland is the “other” through which modern industrialism is established. In examining the history of wastelanding in Navajo country, Voyles provides “an environmental justice history” of uranium mining, revealing how just as “civilization” has been defined on and through “savagery,” environmental privilege is produced by portraying other landscapes as marginal, worthless, and pollutable.

The Navajo People and Uranium Mining - Doug Brugge - 2007

Based on statements given to the Navajo Uranium Miner Oral History and Photography Project, this revealing book assesses the effects of uranium mining on the reservation beginning in the 1940s.

The Navajo People and Uranium Mining - Doug Brugge - 2007

Uranium Mining and the Environment - - 1985*

Uranium Mining and the Environment - - 1985*

Uranium - Minnesota. Division of Minerals - 1980

Uranium - Minnesota. Division of Minerals - 1980

Highland Uranium Solution Mining Project, Operation - - 1978
Highland Uranium Solution Mining Project, Operation - 1978

In recent years, radioactive contamination in the environment by uranium (U) and its daughters has caused increasing concerns globally. This book provides recent developments and comprehensive knowledge to the researchers and academicians who are working on uranium contaminated areas worldwide. This book covers topics ranging from the beginning of the nuclear age until today, including historical views and epidemiological studies. Modelling practices and evaluation of radiological and chemical impact of uranium on man and the environment are included. Also covered are analytical methods used for the determination of uranium in geo/bio environments. Some chapters explore factors which influence uranium speciation and in consequence plant uptake/translocation. Last but not least, several chapters provide approaches and practices for remediation of uranium contaminated areas.

In recent years, radioactive contamination in the environment by uranium (U) and its daughters has caused increasing concerns globally. This book provides recent developments and comprehensive knowledge to the researchers and academicians who are working on uranium contaminated areas worldwide. This book covers topics ranging from the beginning of the nuclear age until today, including historical views and epidemiological studies. Modelling practices and evaluation of radiological and chemical impact of uranium on man and the environment are included. Also covered are analytical methods used for the determination of uranium
environmental concern. Some chapters explore factors which influence uranium speciation and in consequence plant uptake/translocation. Last but not least, several chapters provide approaches and practices for remediation of uranium contaminated areas.

Environmental Development Plan - - 1979

Environmental Development Plan - - 1979

Assessment, Restoration and Reclamation of Mining Influenced Soils - Jaume Bech - 2017-09-09

Assessment, Restoration and Reclamation of Mining Influenced Soils covers processes operating in the environment as a result of mining activity, including the whole spectra of negative effects of anthropopressure and the environment, from changes in soil chemistry, changes in soil physical properties, geomechanical disturbances, and mine water discharges. Mining activity and its waste are an

Knowledge of the fate of potentially harmful elements and their effect on plants and the food chain, and ultimately on human health, is still being understood. Therefore, there is a need for better knowledge on the origin, distribution, and management of mine waste on a global level. This book provides information on hazard assessment and remediation of the disturbed environment, including stabilization of contaminated soils and phytoremediation, and will help scientists and public authorities formulate answers to the daily challenges related to the restoration of contaminated land. Provides a thorough overview of the processes operating on mining-devastated areas, as well as origin, distribution, and deactivation of harmful elements Includes outcomes and recommendations of the Global Mining Initiative that are widely regarded as the code of conduct in the minerals industry Contains global case studies that elucidate various aspects of
environment, including mine-contaminated land

Assessment, Restoration and Reclamation of Mining Influenced Soils - Jaume Bech - 2017-09-09
Assessment, Restoration and Reclamation of Mining Influenced Soils covers processes operating in the environment as a result of mining activity, including the whole spectra of negative effects of anthropopressure and the environment, from changes in soil chemistry, changes in soil physical properties, geomechanical disturbances, and mine water discharges. Mining activity and its waste are an environmental concern. Knowledge of the fate of potentially harmful elements and their effect on plants and the food chain, and ultimately on human health, is still being understood. Therefore, there is a need for better knowledge on the origin, distribution, and management of mine waste on a global level. This book provides information on hazard assessment and remediation of the disturbed stabilization of contaminated soils and phytoremediation, and will help scientists and public authorities formulate answers to the daily challenges related to the restoration of contaminated land. Provides a thorough overview of the processes operating on mining-devastated areas, as well as origin, distribution, and deactivation of harmful elements. Includes outcomes and recommendations of the Global Mining Initiative that are widely regarded as the code of conduct in the minerals industry. Contains global case studies that elucidate various aspects of assessment and restoration of mine-contaminated land.

Effects of Uranium-mining Releases on Ground-water Quality in the Puerco River Basin, Arizona and New Mexico - United States. Office of Navajo and Hopi Indian Relocation - 1997

Effects of Uranium-mining Releases on Ground-water Quality in the Puerco River
Separation technologies are of crucial importance to the goal of significantly reducing the volume of high-level nuclear waste, thereby reducing the long-term health risks to mankind. International cooperation, including the sharing of concepts and methods, as well as technology transfer, is essential in accelerating research and development in the field. The writers of this book are all internationally recognised experts in the field of separation technology, well qualified to assess and criticize the current state of separation research as well as to identify future opportunities for the application of separation technologies to the solution of nuclear waste management problems. The major emphases in the book are research opportunities in the utilization of innovative and potentially more efficient and cost effective processes for waste processing/treatment, actinide speciation/separation methods, technological processing, and environmental restoration.
mining, control technologies opportunities for the application of separation technologies to the solution of nuclear waste management problems. The major emphases in the book are research opportunities in the utilization of innovative and potentially more efficient and cost effective processes for waste processing/treatment, actinide speciation/separation methods, technological processing, and environmental restoration.

Environmental Impacts of Different Uranium Mining Processes - - 2008
This report was done as requested by Alberta Environment to investigate the potential development of new uranium mines in Alberta. Concurrent to this investigation was the review of current emissions standards, their related technologies, and ways for achieving emission reduction. Areas covered in the report are global conditions of the uranium mining industry, potential releases from uranium exploration and for emissions of concern, national and international dose and emission limits, and an economic approach to controlling emissions at a new uranium production facility.-- Includes text from document.
Crownpoint Uranium Solution Mining Project, McKinley County - 1997

Uranium Mining - Tamara Thompson - 2010-08-13
Presents a collection of essays offering different opinions on uranium mining, discussing such topics as the environmental and economic impacts of mining.

Uranium Mining and Milling - Charles Weaver - 1978

Proceedings of the Uranium Mining and Milling Workshop - James E. Olson - 1980

Uranium for Nuclear Power - Ian Hore-Lacy - 2016-02-19
Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, environmentally-benign exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas.
environmentally-benign academia and industry with an authoritative overview of the front end of the nuclear fuel cycle Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety

Uranium for Nuclear Power
- Ian Hore-Lacy - 2016-02-19
Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas. Provides researchers in academia and industry with an authoritative overview of the front end of the nuclear fuel cycle Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety

Cleaning Up Sites Contaminated with Radioactive Materials - Russian Academy of Sciences - 2009-01-23
This publication features
cooperation with the Russian Workshop on Cleaning Up Sites Contaminated with Radioactive Materials, held in Moscow in June 2007. This activity was organized by the National Academies in cooperation with the Russian Academy of Sciences and with funding provided by the Russell Family Foundation. The workshop was designed to promote exchanges of information on specific contaminated sites in Russia and elsewhere and to stimulate greater attention to the severity of the problems and the urgent need to clean up sites of concern to the local and international communities.

Cleaning Up Sites Contaminated with Radioactive Materials - Russian Academy of Sciences - 2009-01-23
This publication features papers presented at the Workshop on Cleaning Up Sites Contaminated with Radioactive Materials, held in Moscow in June 2007. This activity was organized by the National Academies in cooperation with the Russian Academy of Sciences and with funding provided by the Russell Family Foundation. The workshop was designed to promote exchanges of information on specific contaminated sites in Russia and elsewhere and to stimulate greater attention to the severity of the problems and the urgent need to clean up sites of concern to the local and international communities.

Uranium - Joyce R. Nelson - 2015-01-01
Uranium is a naturally occurring, ubiquitous heavy metal. In various chemical forms, natural uranium is found in all soils, rocks, seas and oceans. It is also present in drinking water and food. Uranium was discovered in 1781 by Klaprot, a pharmacist in Berlin, in the Joachisthal silver mines. This book starts with a short history of uranium. It continues with the legacy of uranium mining and the authors go on to discuss the environmental and health effects of depleted uranium, which has the unique
power reactors including natural resources, including human society because of its radiotoxic effects. Uranium migration properties are explored through the geological structures and the groundwater systems based on the determination of its total concentration essential for environmental studies. Other chapters examine the recovery of uranium from phosphate rock; the influence of uranium on the environment and the studies of content of uranium in soil, building materials, drinking water and even in the urine of specific population such as in the Czech Republic, a uranium rich territory; the types of uranium deposits; uranium bioremediation as an eco-friendly, promising approach, which will play an irreplaceable role in global nuclear energy development; discussions on uranium as one of the most widespread contaminants in groundwater in mining areas, as well as in surface waters in Brazil; and an examination of fuel materials that have been developed for use in nuclear uranium. Bulk uranium-based systems are very complex and it is difficult to draw unambiguous conclusion on their properties and reaction mechanisms from experiments. Therefore in this book, laboratory experiments using simple model systems - thin films, for single effect studies which have a ground-breaking nature are explored in detail in this book.

Uranium - Joyce R. Nelson - 2015-01-01

Uranium is a naturally occurring, ubiquitous heavy metal. In various chemical forms, natural uranium is found in all soils, rocks, seas and oceans. It is also present in drinking water and food. Uranium was discovered in 1781 by Klaprot, a pharmacist in Berlin, in the Joachisthal silver mines. This book starts with a short history of uranium. It continues with the legacy of uranium mining and the authors go on to discuss the environmental and health effects of depleted uranium, which has the unique potential to threaten all
uranium. Bulk uranium-based human society because of its radiotoxic effects. Uranium migration properties are explored through the geological structures and the groundwater systems based on the determination of its total concentration essential for environmental studies. Other chapters examine the recovery of uranium from phosphate rock; the influence of uranium on the environment and the studies of content of uranium in soil, building materials, drinking water and even in the urine of specific population such as in the Czech Republic, a uranium rich territory; the types of uranium deposits; uranium bioremediation as an eco-friendly, promising approach, which will play an irreplaceable role in global nuclear energy development; discussions on uranium as one of the most widespread contaminants in groundwater in mining areas, as well as in surface waters in Brazil; and an examination of fuel materials that have been developed for use in nuclear power reactors including systems are very complex and it is difficult to draw unambiguous conclusion on their properties and reaction mechanisms from experiments. Therefore in this book, laboratory experiments using simple model systems - thin films, for single effect studies which have a ground-breaking nature are explored in detail in this book.

Mining North America - John R. McNeill - 2017-07-03

"Over the past five hundred years, North Americans have increasingly turned to mining to produce many of their basic social and cultural objects. From cell phones to cars and roadways, metal pots to wall tile and even talcum powder, minerals products have become central to modern North American life. As this process has unfolded, mining has also indelibly shaped the natural world and North Americans' relationship with it. Mountains have been honeycombed, rivers poisoned, and forests leveled. The effects of these environmental
Mining North America

John R. McNeill - 2017-07-03

"Over the past five hundred years, North Americans have increasingly turned to mining to produce many of their basic social and cultural objects. From cell phones to cars and roadways, metal pots to wall tile and even talcum powder, minerals products have become central to modern North American life. As this process has unfolded, mining has also indelibly shaped the natural world and North Americans' relationship with it. Mountains have been honeycombed, rivers poisoned, and forests leveled. The effects of these environmental transformations have fallen unevenly across North American societies. Mining North America examines these developments. Drawing on the work of scholars from Mexico, the United States, and Canada, this book explores how mining has shaped North America over the last half millennium. It covers an array of minerals and geographies while seeking to draw mining into the core debates that animate North American environmental history generally. Taken together, the authors' contributions make a powerful case for the centrality of mining in forging North American environments and societies"--Provided by publisher.
Presented here is the story of the mining and sale of uranium and radium ore through biographical vignettes, chemistry, physics, geology, geography, occupational health, medical utilization, environmental safety and industrial history. Included are the people and places involved over the course of over 90 years of interconnected mining and sale of radium and uranium, finally ending in 1991 with the abandonment of radium paint and medical devices, Soviet nuclear parity, and the Radiation Exposure Compensation Act.

economic and other reasons,
Statement Related to
Operation of Irigaray
Uranium Solution Mining
Project, Wyoming Mineral
Corporation - U.S. Nuclear
Regulatory Commission.
Office of Nuclear Material
Safety and Safeguards - 1978

Environmental
Contamination from
Uranium Production
Facilities and Their
Remediation - International
Atomic Energy Agency - 2005
The legacies of past uranium
mining and milling continue
to be of concern and require
assessment and remedial
action. This problem has been
recognized in many parts of
the world over the past three
decades, but has received
increased attention since the
end of the Cold War.
Considerable effort and
resources have been
expended in dealing with this
legacy. However, it has to be
noted that the search for
uranium has covered almost
all countries on the globe. The
result in some countries is a
legacy of numerous small
scale mines and mills. For

including less stringent
environmental standards and
awareness at the time, these
operations may not have been
properly closed out and made
safe. The remediation
strategies and techniques
developed by major problem
holders, such as the USA or
Germany, often would be out
of scale for the problems in
other countries. Therefore an
international workshop was
organized in Lisbon from 11
to 13 February 2004 as a
forum for the exchange of
views and experiences of
countries with smaller scale
uranium mining legacies.

Environmental
Contamination from
Uranium Production
Facilities and Their
Remediation - International
Atomic Energy Agency - 2005
The legacies of past uranium
mining and milling continue
to be of concern and require
assessment and remedial
action. This problem has been
recognized in many parts of
the world over the past three
decades, but has received
increased attention since the
Considerable effort and resources have been expended in dealing with this legacy. However, it has to be noted that the search for uranium has covered almost all countries on the globe. The result in some countries is a legacy of numerous small scale mines and mills. For economic and other reasons, including less stringent environmental standards and awareness at the time, these operations may not have been properly closed out and made safe. The remediation strategies and techniques developed by major problem holders, such as the USA or Germany, often would be out of scale for the problems in other countries. Therefore an international workshop was organized in Lisbon from 11 to 13 February 2004 as a forum for the exchange of views and experiences of countries with smaller scale uranium mining legacies.

Environmental Development Plan - 1979

Shirley Basin Uranium Mill - 1971

Shirley Basin Uranium Mill - 1971

Uranium Mining - Peter Johnson - 1977

Uranium Mining - Peter Johnson - 1977

Evolutionary and Revolutionary Technologies for Mining - National Research Council - 2002-03-14

The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this study, and the Statement of
Evolutionary and Revolutionary Technologies for Mining - National Research Council - 2002-03-14

The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.

Final Environmental Statement Related to the Wyoming Mineral Corporation Irigaray Uranium Solution Mining Project (Johnson County, Wyoming), Docket No. 40-8502 - U.S. Nuclear Regulatory Commission - 1978

study, and the Statement of Task was expanded to include health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.
Uranium mining in the Commonwealth of Virginia has been prohibited since 1982 by a state moratorium, although approval for restricted uranium exploration in the state was granted in 2007. Uranium Mining in Virginia examines the scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining, milling, and processing as they relate to the Commonwealth of Virginia for the purpose of assisting the Commonwealth to determine whether uranium mining, milling, and processing can be undertaken in a manner that safeguards the environment, natural and historic resources, and the health and well-being of its citizens. According to this report, if Virginia lifts its moratorium, there are "steep hurdles to be surmounted" before mining and processing could take place within a regulatory setting that appropriately protects workers, the public, and the environment, especially given that the state has no experience regulating mining and processing of the radioactive element. The authoring committee was not asked to recommend whether uranium mining should be permitted, or to consider the potential benefits to the state were uranium mining to be pursued. It also was not asked to compare the relative risks of uranium mining to the mining of other fuels such as coal. This book will be of interest to decision makers at the state and local level, the energy industry, and concerned citizens.

Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety,
Uranium mining in the Commonwealth of Virginia has been prohibited since 1982 by a state moratorium, although approval for restricted uranium exploration in the state was granted in 2007. Uranium Mining in Virginia examines the scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining, milling, and processing as they relate to the Commonwealth of Virginia for the purpose of assisting the Commonwealth to determine whether uranium mining, milling, and processing can be undertaken in a manner that safeguards the environment, natural and historic resources, agricultural lands, and the health and well-being of its citizens. According to this report, if Virginia lifts its moratorium, there are "steep hurdles to be surmounted" before mining and processing could take place within a regulatory setting that appropriately protects workers, the public, and the environment, especially given that the state has no experience regulating mining and processing of the radioactive element. The authoring committee was not asked to recommend whether uranium mining should be permitted, or to consider the potential benefits to the state were uranium mining to be pursued. It also was not asked to compare the relative risks of uranium mining to the mining of other fuels such as coal. This book will be of interest to decision makers at the state and local level, the energy industry, and concerned citizens.

Uranium Mining and Management - Jordan Dunn - 2012
This book examines uranium mining and management in the United States with a focus on federal considerations. From 2005 to 2007, uranium prices increased from about $20 a pound to over $140 a pound, which led to renewed interest in uranium mining,
prices increased from about extraction, on federal land in the U.S. In early 2012, thousands of claims have been filed to explore for and potentially extract uranium on federal land. This increase in claims filed, has raised concerns about the potential impacts that an increased level of uranium exploration and extraction could have on the environment. During uranium extraction, the waste rock piles that are formed can introduce radionuclides (such as radium) and heavy metals (such as selenium and arsenic) into the environment. Before the mid-1970s, many mines on federal land, were abandoned without any reclamation, leaving a costly legacy of abandoned mines that pose potential health, safety, and environmental hazards.

Uranium Mining and Management - Jordan Dunn - 2012
This book examines uranium mining and management in the United States with a focus on federal considerations. From 2005 to 2007, uranium prices increased from about $20 a pound to over $140 a pound, which led to renewed interest in uranium mining, both exploration and extraction, on federal land in the U.S. In early 2012, thousands of claims have been filed to explore for and potentially extract uranium on federal land. This increase in claims filed, has raised concerns about the potential impacts that an increased level of uranium exploration and extraction could have on the environment. During uranium extraction, the waste rock piles that are formed can introduce radionuclides (such as radium) and heavy metals (such as selenium and arsenic) into the environment. Before the mid-1970s, many mines on federal land, were abandoned without any reclamation, leaving a costly legacy of abandoned mines that pose potential health, safety, and environmental hazards.

Uranium Mining - - 2014

Uranium Mining - - 2014
This report examines current U.S. regulation and industry practices regarding security measures and controls over natural uranium prior to enrichment.

Governing Uranium in the United States - Sharon Squassoni - 2014-03-25

This report examines current U.S. regulation and industry practices regarding security measures and controls over natural uranium prior to enrichment.

Uranium - Past and Future Challenges - Broder J. Merkel - 2016-09-24

This book is the collection of papers from the latest International Uranium Mining and Hydrogeology Conference (UMH VII) held in September 2014, in Freiberg, Germany. It is divided to five sessions: Uranium Mining, Uranium and Phosphates, Clean-up technologies for water and soil. Uranium and daughter nuclides and basic research and modeling. Each session covers a wide range of related topic and provides readers with up to date research and solutions on those matters.

Uranium Development in the San Juan Basin Region
- United States. San Juan Basin Regional Uranium Study - 1980

Uranium Development in the San Juan Basin Region
- United States. San Juan Basin Regional Uranium